
Security Review & Penetration Testing
Unhosted Wallet: Extension Core,

Backend Services

February, 2025

Contents

1. Summary
2. Engagement Overview
3. Risk Classification
4. Vulnerability Summary
5. Findings
6. Disclaimer

Summary

Enigma Dark
Enigma Dark is a web3 security firm leveraging the best talent in the space to secure all
kinds of blockchain protocols and decentralized apps. Our team comprises experts who
have honed their skills at some of the best auditing companies in the industry. With a
proven track record as highly skilled white-hats, they bring a wealth of experience and a
deep understanding of the technology and the ecosystem.

Learn more about us at enigmadark.com

Unhosted Wallet: Extension Core & Backend Services
Unhosted Wallet is a next-generation, self-custody wallet built on Biconomy's Nexus
account abstraction framework. It offers seamless integration with various providers,
including fiat24 and Onramper, to enhance user experience.

Engagement Overview

Over the course of 3 weeks, beginning 27 January 2025, the Enigma Dark team
conducted a security review of the Unhosted Wallet: Extension Core & Backend Services
project. The review was performed by two Security Researchers: Jakub heba & N0xi0us.

breakline

1

https://www.enigmadark.com/

The following repositories were reviewed at the specified commits:

Repository Commit

Unhosted-
Wallet/Unhosted/src/background d228fa585d25570c895e8103db27ccdfb74886b7

Unhosted-Wallet/unhosted-wallet-
backend 48d5ebbcc5b368ba7ed9d132523f7026dd8f7f39

Unhosted-Wallet/lib-unhosted-swap.js aaa093ab2616eba3e57f566e70d50fbaa44c9d38

Unhosted-Wallet/lib-unhosted-signer.js 57846236d4de7e37c24c562a11093f8c992af139

Risk Classification

Severity Description

Critical Vulnerabilities that lead to a loss of a significant portion of funds of the
system.

High Exploitable, causing loss or manipulation of assets or data.

Medium Risk of future exploits that may or may not impact the system.

Low Minor code errors that may or may not impact the system.

Informational Non-critical observations or suggestions for improving code quality,
readability, or best practices.

breakline

2

Vulnerability Summary

Severity Count Fixed Acknowledged

Critical 0 0 0

High 3 3 0

Medium 3 3 0

Low 2 2 0

Informational 2 2 0

breakline

3

Findings

Index Issue Title Status

H-01 Hardcoded AWS Secrets in Environment Variables Fixed

H-02 Direct call to the aa service reveals the bundlerSecret and
pmSecret in error path Fixed

H-03 Lack of pagination enforcement leads to DoS Fixed

M-01 Race condition allows to repeatedly claim quests Fixed

M-02 Lack of authorization allows to claim arbitrary quests Fixed

M-03 Password, seed phrases or private key might be extracted from the
browser memory Fixed

L-01 Improper address check in wallet creation Fixed

L-02 Missing upper cache limit Fixed

I-01 Backend implements never used services Fixed

I-02 Unused WalletController handlers Fixed

breakline

4

Detailed Findings

High Risk

H-01 - Hardcoded AWS Secrets in Environment Variables

Severity: High Risk

Technical Details:
During the assessment of the Kubernetes environment in Amazon EKS, it was discovered
that AWS access credentials were exposed in the environment variables of running pods.
This practice poses a significant security risk, as any process within the container—or an
attacker with access to the pod—can extract and misuse these credentials.

Impact:
Privilege escalation and information disclosure.

Recommendation:
To mitigate this risk, AWS IAM Roles for Service Accounts (IRSA) should be implemented
to securely grant AWS permissions to Kubernetes workloads without hardcoded
credentials.

Developer Response:
Fixed at commit bf6df8a .

H-02 - Direct call to the aa service reveals the bundlerSecret and
pmSecret in error path

Severity: High Risk

Technical Details:
It was found, that the aa-paymaster-proxy and aa-bundler-proxy services allows for
unauthorized call to the, respectively, /aa/paymaster/${chainId}/ and
/aa/bundler/${chainId}/ endpoints.

When specifying the proper chainId , for example 1 (Ethereum), request goes through
the service, but due to the unknown reason, returns an error with secret included. Bundler:

5

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Error</title>
</head>
<body>
<pre>Cannot GET /api/v3/1/[REDACTED SECRET]/aa/bundler/1</pre>
</body>
</html>

Paymaster:

{"statusCode":404,"message":"Cannot GET /api/v2/1/[REDACTED
SECRET]","error":"Not Found"}

Impact:
Unauthorized access to the Paymaster and Bundler services using the secrets leaked.

Recommendation:
We recommend to analyze what is the reason of returning secret keys in case of error and
mitigate this.

Developer Response:
Fixed at commit 3c2cb60 .

H-03 - Lack of pagination enforcement leads to DoS

Severity: High Risk

Technical Details:
While inspecting referrals/src/utils/paginator.util.ts the following line of code was
discovered :
const perPage = Number(options?.perPage || defaultOptions?.perPage) || 10;

Since perPage is controlled by user input and lacks any enforced limits, an attacker can
specify an excessively large value. This forces the server to generate and return an
extremely large response, leading to excessive resource consumption and potentially
causing a Denial of Service (DoS).

For example browsing to:
http://stg.unhosted.com/transaction/0xD48c694db2e2db7952aaaB453FF9331949fA7405?
perPage=100000 reveals that the server accepts any value provided to the perPage
parameter.

6

https://github.com/Unhosted-Wallet/unhosted-backend/blob/main/apps/referrals/src/utils/paginator.util.ts

Impact:
High, this vulnerability could be exploited to overload the backend referral services,
potentially causing downtime.

Recommendation:
Implement a limit to the number of results being returned by page.

Developer Response:

Fixed at commit 401b5f1 .

breakline

7

Medium Risk

M-01 - Race condition allows to repeatedly claim quests

Severity: Medium Risk

Technical Details:
It was discovered that there is a race condition in /quest/claim endpoint allowing to
claim a quest more than one time.

In order to test this vulnerability, five claim requests were sent in parallel. As a result, the
quest was successfully claimed four out of the five attempts.

8

Impact:
Medium, Increase points by claiming quests several times.

Developer Response:
Fixed. The quests have been removed for the current version.

M-02 - Lack of authorization allows to claim arbitrary quests

Severity: Medium Risk

Technical Details:
It was discovered that there are not any checks in place to verify a user has successfully
completed a quest before awarding points. Since endpoint /wallet/walletAddress
returns the IDs of uncompleted quests, a malicious user can just send a POST request to
/quest/claim passing their walletAddress and questId to successfully claim any quest.

This allows for the enumeration of quest IDs:

9

Additionally, quests can be claimed without completing the required tasks:

10

Impact:
Malicious users can claim any quest and receive points without completing the required
tasks.

Recommendation:
Implement authorization checks to verify a quest has been completed before allowing to
claim it.

Developer Response:
Fixed. The quests have been removed in the current version.

11

M-03 - Password, seed phrases or private key might be extracted
from the browser memory

Severity: Medium Risk

Technical Details:
Sensitive data, including the mnemonic, private key, and user password, remain in the
extension's process memory after being used or displayed. These values persist until the
extension is fully closed, posing a significant security risk.

This is particularly problematic because:

If an attacker gains physical access to the device or if the device is infected with
malware, the browser's memory could be dumped.
This would allow an attacker to extract these confidential values without requiring
the user's password, bypassing standard authentication flows.

Additionally, these sensitive strings remain in memory even after setLocked is called,
meaning that even when the extension is locked, requiring a password to unlock, the data
remains accessible in the subprocess memory.

Proof of Concept:

Password being extracted from the extension memory:

Impact:
Extraction of mnemonic, private key or user password from the memory of the extension
process, leading to the funds being stolen.

12

Recommendation:
Make sure that after every critical operation, like password usage, private key displaying or
other, the memory part storing these strings are properly overwritten.

Developer Response:

Fixed at commit 61a1c96 .

We've implemented an improved input component to securely handle passwords and
private keys, preventing leaks by intercepting input via onKeyDown and encoding values
into Uint8Array. Additionally, values received from the wallet controller are encoded, and
they are only decoded when being sent back.

For display and copying, we've adjusted how seed phrases and private keys are passed to
the respective components—exposing them to the DOM only when necessary and
ensuring they are removed from memory during unmount.

breakline

13

Low Risk

L-01 - Improper address check in wallet creation

Severity: Low Risk

Technical Details:
The address check being performed in referrals/src/wallet/wallet.controller.ts is
incorrect, allowing a user to create and insert new wallets in the DB with arbitrary data.

As an example, browse to: http://stg.unhosted.com/wallet/poc

Impact:
Filling the DB with invalid addresses.

Recommendation:
Review how the check is implemented.

Developer Response:
Fixed at commit 589d031 .

The validation was being bypassed due to how decorators interact with object
destructuring in JavaScript. We resolved this by passing the entire object instead of
destructuring it, ensuring that validation executes correctly.

14

L-02 - Missing upper cache limit

Severity: Low Risk

Technical Details:
It was found that proper expiration times were set for cache storing. While this prevents
usage of outdated data or storing unnecessary information, there is no upper limit defined
for how much of such information might be stored in the user browser.

Given that multiple eth-* methods are supported by canCache , a malicious site could
utilize it to fill the user's memory with dummy data, leading to decreased user experience
and potential browser crash.

Impact:
Decreased user experience and potential browser crash.

Recommendation:
We recommend defining a maximum cap for cache that should be allowed by the
extension.

Developer Response:
Fixed in PR 219.

breakline

15

https://github.com/Unhosted-Wallet/Unhosted/pull/219

Informational

I-01 - Backend implements never used services

Severity: Informational

Technical Details:
It was found that the Moralis service in apps/metadata/src/moralis/moralis-
metadata.service.ts defines the getTransactionVerbose and getWalletNetWorth
functions, which are not called by any of the current functionalities.

While not a security issue itself, such functions might be related to not-implemented,
forgotten functionalities, which need to be created to fulfill functional requirements.

Impact:
Potential missing functionality or service implementation.

Recommendation:
We recommend removing the unused functions or defining proper handlers to utilize them.

Developer Response:
Fixed at commit e4e7a4b.

I-02 - Unused WalletController handlers

Severity: Informational

Technical Details:
In the WalletController handlers list, defined in
src/background/controller/wallet.ts , multiple of them are not used anywhere in the

logic, or called internally. While not directly a security issue, such leftovers might be
problematic if some of these functionalities were planned to be implemented, but during
the development phase they were forgotten.

Samples: clearRabbyPointsSignature , getLastGetAddress , clearWatchMode ,
checkHasMnemonic , deriveNewAccountFromMnemonic , getAccountsCount ,
checkLedgerHasHIDPermission , completedTransaction , updateInitAlianNameStatus ,
getCustomTestnetTxReceipt .

Impact:
Potentially not implemented functionalities, leading to broken logic or missing business
assumptions coverage.

16

https://github.com/Unhosted-Wallet/unhosted-wallet-backend/pull/35/commits/e4e7a4ba898c5ca128c3251c8acdf94746cf0078

Recommendation:
We recommend removing these handlers if they are not needed in the current logic, or
implementing proper functionalities to utilize them in the current codebase.

Developer Response:
Fixed in PR 220

breakline

17

https://github.com/Unhosted-Wallet/Unhosted/pull/220

Disclaimer

This report does not endorse or critique any specific project or team. It does not assess
the economic value or viability of any product or asset developed by parties engaging
Enigma Dark for security assessments. We do not provide warranties regarding the bug-
free nature of analyzed technology or make judgments on its business model, proprietors,
or legal compliance.

This report is not intended for investment decisions or project participation guidance.
Enigma Dark aims to improve code quality and mitigate risks associated with blockchain
technology and cryptographic tokens through rigorous assessments.

Blockchain technology and cryptographic assets inherently involve significant risks. Each
entity is responsible for conducting their own due diligence and maintaining security
measures. Our assessments aim to reduce vulnerabilities but do not guarantee the
security or functionality of the technologies analyzed.
This security engagement does not guarantee against a hack. It is a review of the
codebase during a specific period of time. Enigma Dark makes no warranties regarding
the security of the code and does not warrant that the code is free from defects. By
deploying or using the code, the project and users of the system agree to use the code at
their own risk. Any modifications to the code will require a new security review.

18

