Summary
Auditor: vnmrtz (Victor Martinez)
Client: Unhosted Wallet

Report Delivered: November, 2023

Protocol Summary

Protocol Name Unhosted Wallet Modules
Language Solidity
Codebase Wallet Modules
Commit 29469c0e3979ba3efc07c31d5be06e8512b60041
Previous Audits No

About vnmrtz

Victor Martinez, or vnmrtz, is an independent smart contract security researcher. Having found
numerous security vulnerabilities in various protocols, he does his best to contribute to the
blockchain ecosystem and its protocols by putting time and effort into security research & reviews.
Reach out on Twitter @yvn_martinez_ or on Telegram @\Yicrocvn.

Audit Summary

Unhosted engaged vnmrtz to review the security of its wallet modules. From the 6th of November
to the 19th of November, vnmrtz reviewed the source code in scope. At the end, there were 18 issues
identified. All findings have been recorded in the following report. Notice that the examined smart
contracts are not resistant to internal exploit. For a detailed understanding of risk severity, source
code vulnerability, and potential attack vectors, refer to the complete audit report below.

Vulnerability Summary

Severity Total Pending Acknowledged Par. resolved Resolved
HIGH 2 0 o (o] 2
MEDIUM 5 0 2 (0] 3

3 (o] (o] (o] 3
INFO 8 0 3 (0] 5




Audit Scope

ID File Path
FACTORY defi-strategies\contracts\StrategyFactory.sol
MODULE defi-strategies\contracts\StrategyModule.sol
PROXY defi-strategies\contracts\Proxy.sol
BASE_HANDLER defi-strategies\contracts\handlers\BaseHandler.sol
AAVEV2_HANDLER defi-strategies\contracts\handlers\aavev2\AaveV2H.sol
CALLBACK_HANDLER defi-strategies\contracts\handlers\aavev2\
CallbackHandler.sol
DATATYPES defi-strategies\contracts\handlers\aavev2\libraries\
DataTypes.sol
COMPOUND_HANDLER defi-strategies\contracts\handlers\compoundv3\
CompoundV3H.sol
LIDO_HANDLER defi-strategies\contracts\handlers\lido\
LidoH.sol
UNISWAPV3_HANDLER defi-strategies\contracts\handlers\uniswapV3\
UniswapV3H.sol
BYTESLIB defi-strategies\contracts\handlers\uniswapV3\libraries\
BytesLib.sol

Severity Classification

Severity Classification
HIGH Exploitable, causing loss/manipulation of assets or data.
MID Risk of future exploits that may or may not impact the smart contract
execution.

Minor code errors that may or may not impact the smart contract
execution.

INF No impact issues. Code improvement

Methodology

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

e Assessing the codebase to ensure compliance with current best practices and industry
standards.
Ensuring contract logic meets the specifications and intentions of the client.

e Cross-referencing contract structure and implementation against similar smart contracts
produced by industry leaders.

e Thorough line-by-line manual review of the entire codebase by industry experts.



Findings and Resolutions

ID Description Severity Status
1 Malicious beneficiary can DOS strategies HIGH Fixed
2 Cross contract transaction replay HIGH Fixed
3 A malicious handler could modify enabled modules through MID Acknowledged
selfcall
4 Missing access control checks on flash loan callback contract MID Fixed
5 Avoid using a pricefeed oracle to fetch gas price MID Fixed
(] Transaction can be replayed after hard forks MID Acknowledged
7 Solidity version not supported on some chains MID Fixed
8 Do not hardcode contract addresses Fixed
9 Include uniswap v3 swap deadline in signed tx params Fixed
10 FACTORY baselmplementation address cannot be updated Fixed
n Missing admin module approval INFO Acknowledged
12 Consider implementing withdraw on HLIDO handler INFO Acknowledged
13 High dev fees on gas-used during handler execution INFO Fixed
14 Use OZ's forceApprove instead of custom _tokenApprove INFO Fixed
15 Consider implementing an AAVE-V3 handler INFO Acknowledged
16 Handler naming conventions do not match INFO Fixed
17 Use custom errors on _requireMsg GAS Fixed
18 Optimize for loops across the codebase GAS Fixed




1] Malicious beneficiary can DOS strategies

Severity Category Status

HIGH Design error Fixed

Description of the issue

The existing beneficiary fee mechanism in MODULE transfers a proportion of the gas utilized within
the strategy to the deploying developer. The drawback of this "push" model is the introduction of
vulnerabilities that could potentially render the strategy susceptible to a Denial-of-Service (DoS)
state.

A malicious developer could exploit this by designating a malicious contract as the beneficiary. This
malicious contract, exemplified by the Beneficiary contract below, executes a revert upon receiving
Ether, thereby enabling the malicious developer to obstruct the execution of the strategy at their
discretion.

contract Beneficiary() {
receive() {
revert("");

Consequently, any invocation of the execStrategy function in this scenario would result in a revert,
impeding the normal operation of the strategy.

Recommendation

It is recommended to transition from the current push mechanism to a push-pull model within
the existing system. In the proposed push-pull model, beneficiary fees are accumulated without
immediate transfer, affording the beneficiary the ability to claim these fees through a designated
function at their discretion.

Resolution
Commit: flaflbbd08e230af108be90667a90127c52046b4

Team Response: Resolved by introducing a claim mechanism for the beneficiary address and
decoupling the process of sending fees from the sender to the userSA. This separation ensures
that executing the strategy is independent of the userSA needing to execute it for paying the
developer fee.

2 | Cross contract transaction replay

Severity Category Status

HIGH Logic error Fixed

Description of the issue

The MODULE component incorporates EIP-1271 signature verification to confirm that the transaction



signer is the owner of the smart account. This verification precedes the execution of handler code,
preventing arbitrary users from utilizing the module as an entry point for interacting with the
owner's smart account.

The signature itself encompasses various elements, including the smart account, transaction data, a
unique nonce, EXECUTE_STRATEGY_TYPEHASH, handler, transaction value, and the domain
separator. According to the EIP-712 specification, the domain separator is calculated as the hash of
DOMAIN_SEPARATOR_TYPEHASH, nameHash, versionHash, CHAINID, and the address of the
verifying contract.

A potential issue arises from the fact that, in this system, the MODULE is the entity constructing the
transaction hash for verification, while the smart account is responsible for the verification itself.
Consequently, the address of the MODULE that constructs the hash should be incorporated into the
DOMAIN SEPARATOR. Failure to include this address could permit another MODULE, with a
different beneficiary but the same handler (thus deployed to a distinct address), to replay all
transactions processed by the original one.

Despite users having control over adding modules to the wallet, if they add two modules targeting
the same handler, all transactions from one module could be replayed on the second one. To
mitigate this, it is recommended to include the address of the MODULE in the DOMAIN
SEPARATOR, ensuring proper differentiation between modules and preventing replay attacks.

Recommendation

Follow the EIP-712 guidelines for domain separator building and include both smart account and
MODULE addresses in the signed data.

Resolution
Commit: 4cf58a2fd1de7d6bfeb5b57001507¢2379f19b83

Team Response: Resolved by updating the verifying contract to use the module address for
constructing the domain separator and incorporating the smart account address as a salt. This
modification ensures that each handler and module has a specific identification, mitigating the
risk of replay attacks.

3 | A malicious handler could modify enabled modules calling the

smart account through a selfcall

Severity Category Status

MID Missing check Acknowledged

Description of the issue

The issue arises from a handler being able to bypass the enableModule() function access control
checks, which increments the enabledModuleCount of a smart account, and register a new module
without being the smart account owner. Given that the enableModule() function allows calls from
the entrypoint or the wallet itself, two potential approaches can address this concern:

Approach 1: Restricting Module Management to Smart Account Owner

Make sure only the owner of the smart account and not the smart account itself can add / remove a
module. Consider overriding and changing the checks on the following SmartAccount.sol functions



function enableModule(address module) external virtual override {
_requireFromeEntryPointOrSelf();
_enableModule(module);

function setupAndEnableModule(
address setupContract,
bytes memory setupData
) external virtual override returns (address) {
_requireFromeEntryPointOrSelf();
return _setupAndEnableModule(setupContract, setupData);

function disableModule(address prevModule, address module) public virtual {
_requireFromEntryPointOrSelf();
_disableModule(prevModule, module);

Approach 2:

To ensure that a malicious handler cannot add a non-factory deployed module to the smart account,
which could grant them unlimited future power, a check is introduced before calling
execTransactionFrommModuleReturnData. This check compares the hash of the modules before the
transaction with the hash after the call:

// Approach 2: Hash Check

(address[] memory modulesBefore,) = safe.getModulesPaginated(SENTINEL_OWNERS,
enabledModuleCount);

_existingModulesHash = keccak256(abi.encode(modulesBefore));

// ... (execute transaction)

(address[] memory modulesAfter,) = safe.getModulesPaginated(SENTINEL_OWNERS,
enabledModuleCount + 1);
if (keccak256(abi.encode(modulesAfter)) != _existingModulesHash) {

revert SignersCannotChangeModules();

Recommendation

In summary, it is strongly advised to implement measures that restrict the ability of handlers to
register new modules in the smart account system.

Resolution

Team Response: Acknowledged.



4 | Missing access control checks on flash loan callback contract

Severity Category Status

MID Missing checks Fixed

Description of the issue

The CALLBACK_HANDLER component, functioning as a blueprint for custom implementations,
should come with two default checks by default: msg.sender == AAVEV2 pool and initiator address ==
smart wallet. These checks, while fundamental for the secure operation of the smart account, might
be overlooked by developers if not included in the template. The absence of these checks in custom
implementations built upon this contract could potentially jeopardize the integrity of the smart
account.

Recommendation

Add the following checks to the implementation of CALLBACK_HANDLER’s executeOperation:

function executeOperation(
address[] calldata,
uint256[] calldata,
uint256[] calldata,
address,
bytes calldata
) external virtual returns (bool) {
_requireMsg(
msg.sender ==
ILendingPoolAddressesProviderV2(provider).getLendingPool(),
"executeOperation”,
"invalid caller"

)5

_requireMsg(
initiator == address(this),
"executeOperation”,
"not initiated by the proxy"
)
// execute logic on flashloan receive
return true;

Resolution
Commit: c4a5355900bde545d11e0e15850077601cacf9ba

Team Response: Resolved by incorporating the check " msg.sender == initiator™ into the
executeOperation function. This adjustment is made considering that the callback handler is
invoked by the wallet and not directly by the AAVE pool, ensuring the necessary security
verification.



5 | Avoid using a pricefeed oracle to fetch gas price

Severity Category Status

MID Business logic error Fixed

Description of the issue

The MODULE component calculates the gas price by utilizing a Chainlink price feed. Generally using
oracles is not advisable when alternative methods are available to fetch the data. Since gas price is
being calculated in ETH, a more straightforward approach would be to rely on tx.gasprice for the gas
price calculation in ETH. This avoids the use of an external oracle, which could introduce various
attack vectors and vulnerabilities, including the risk of stale prices specially on L2s.

Recommendation
Opt for simplicity and gas efficiency by utilizing tx.gasprice for gas price retrieval, as opposed to the

more complex alternative of fetching data from an external oracle such as
AggregatorV3interface(_gasFeed).latestRoundData(). This not only achieves notable gas savings but
also eliminates an entire category of potential bugs, contributing to a more straightforward and
reliable implementation.

Resolution
Commit: 5f1f0615¢3596beeffOch347fdd13bc36d31d478

Team Response: Resolved by substituting the gas feed with tx.gasprice for gas estimation in the
module component.

6 | Transaction can be replayed after hardforks

Severity Category Status

MID Business logic error Acknowledged

Description of the issue

The MODULE contract initializes the domainSeparator (containing the chain ID) in the constructor
and always uses this separator. However, this approach can pose issues in the event of a hard fork
that alters the chain ID (e.g., Ethereum -> Ethereum Classic) after the contract deployment. All
transactions will then be usable on both chains, although it is only intended for one of them.
Furthermore, replaying transactions on different chains.

Recommendation
Consider using the OpenZeppelin's EIP712 contract or caching the original chain ID and returning

the cached DOMAIN_SEPARATOR if the chain id has not changed. This solution aligns with
OpenZeppelin's approach, providing a gas-efficient resolution specifically required during hard forks
when the chain ID undergoes modification.

Resolution

Team Response: Acknowledged for optimization reasons, the domain separator in the module


https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/EIP712.sol#L82

contract, being dependent on a salt and not immutable, prompts consideration. Checking the
chainld every time for executing incurs additional gas usage.

7 | Solidity version not supported on some chains

Severity Category Status

MID Design Error Fixed

Description of the issue

Solidity version compatibility issues exist on certain chains due to the utilization of the PUSHO
instruction, which pushes the constant value O onto the stack. Notably, this opcode is not supported
on various chains, including Arbitrum, and may pose challenges for projects compiled with Solidity
versions equal to or greater than 0.8.20, where PUSHO was introduced.

Recommendation

Since Unhosted Wallet is supposed to be deployed across a huge variety of chains, its essential to
make sure it will be supported in all of them. To prevent unexpected issues, consider using a Solidity
version lower than 0.8.20, such as 0.8.19, where the problematic opcode is not utilized. This
adjustment helps ensure broader support and avoids potential complications across different
blockchain networks.

Resolution
Commit: 3dccble97e0a623c52d65cdc3396291f8db8a761

Team Response: Resolved by updating the factory and implementation version to 0.8.19, while
maintaining the rest of the handlers at version 0.8.20. This adjustment accommodates
customization by developers, also ensuring compatibility with the latest version of the
OpenZeppelin v5 contracts.

Severity Category Status

Design Error Fixed

Description of the issue

The contract UNISWAPV3_HANDLER has the ROUTER address hard coded as a constant. This is not
advisable since contracts do not always live at the same address across all chains, for example the
Cello chain has the uniswap v3 router deployed on a different address than the rest of supported
chains.

Not only for this contract but for future handler implementations it is advisable to pass addresses as
params instead of hardcoding them.

Recommendation



Pass the router address as a parameter in the constructor and store it in an immutable variable like
wrappedNativeTokenUniV3.

Resolution
Commit: db9ad8246f757226aefff9e2c9b0950f41ca7432

Team Response: Resolved by making the router address initializable in the constructor,
providing flexibility and adaptability for the UNISWAPV3_HANDLER contract across different
chains.

Severity Category Status

Business logic error Fixed

Description of the issue

To facilitate swaps on Uniswap, one of the parameters required is the deadline, ensuring that the
order won't be processed after a certain timestamp. Currently, the UNISWAPV3_HANDLER sets the
deadline to the current block.timestamp every time it configures swap parameters. However, this
approach renders the deadline useless since it is not included in the signature, making the swap
transaction perpetually valid in the future since the deadline will always be set when executing the
transaction.

Recommendation

To address this issue, it is recommended to enhance user control over the execution time frame of
their swaps. This can be achieved by including a deadline parameter within the signed transaction
data. This modification ensures that users can specify the deadline for their swaps and that it is a part
of the transaction signature, providing more effective control over the execution time frame.

Resolution
Commit: 862c146b775a8e111e250d29b7afcc58cec2354a

Team Response: Resolved by modifying the functions to receive the deadline as parameters,
thereby providing users with the ability to specify the deadline for their swaps and ensuring it is
included in the transaction signature for effective control over the execution time frame.

Severity Category Status

Design Error Fixed

Description of the issue

The FACTORY contract currently employs a basiclmplementation variable during the creation of new
MODULE clones. Despite the presence of versioning within MODULE, setting this variable as



immutable makes it impossible to deploy new clones pointing to the new version of the
implementation of the MODULE contract.

Recommendation

To address this concern, it is advisable to make the basicimplementation variable mutable.
Additionally, it is recommended to implement an admin or DAO-controlled setter function that
allows for the dynamic adjustment of this variable.

Resolution
Commit: cdf8002064ead9e0f14f80c5896b0b81e32b6409

Team Response: Resolved by introducing an updating implementation mechanism that is
access controlled by the owner, ensuring flexibility in adjusting the basiclmplementation variable
within the FACTORY contract.

11 | Missing admin module approval

Severity Category Status

INFO Missing checks Acknowledged

Description of the issue

As per the specification in the defi-strategies GitHub repository, the FACTORY component should
feature an admin or ownership function dedicated to the approval and registration of new modules.
Given the inherent trustless nature of the system, it is imperative to establish a mechanism enabling
users to identify modules that have been deployed with verified or audited handlers, distinguishing
them from modules characterized as entirely trustless.

A noteworthy observation is that, while the factory contract inherits OpenZeppelin's Ownable
contract, the onlyOwner modifier remains unutilized within the codebase.

Recommendation

To address this, it is strongly recommmended to incorporate an admin access control mechanism
for the deployment of new modules. This can be achieved by either applying the onlyOwner
modifier to deployStrategyModule functions or by implementing a registry featuring a mapping
that whitelists forthcoming module addresses. Given the deterministic nature of these addresses,
facilitated by the use of the create2 opcode, the latter approach would enhance transparency
and facilitate a more robust control structure for module deployment.

Resolution

Team Response: Acknowledged.

12 | Consider implementing withdraw on HLIDO handler

Severity Category Status

INFO Improvement Acknowledged



https://github.com/Unhosted-Wallet/unhosted-modules/tree/dev/defi-strategies

Description of the issue

The LIDO_HANDLER currently only implements a function for depositing on LIDO, lacking support
for withdrawals. Providing both deposit and withdrawal actions within the handler would enhance
the user experience.

Recommendation

To address this, it is recommended to implement the LIDO withdrawal functionality in the
LIDO_HANDLER. By extending the handler to support both deposit and withdrawal actions, users
will have a more comprehensive and convenient interface for interacting with the LIDO protocol.

The LIDO docs explain how to implement this.

Resolution

Team Response: Acknowledged.

13 | High dev fees on gas-used during handler execution

Severity Category Status

INFO Design Error Fixed

Description of the issue

The BASE_HANDLER currently imposes a 50% fee factor on gas, which might be perceived as
relatively high when utilizing a developer's strategy.

Recommendation

It is advisable to review the feasibility of reducing the beneficiary fee to a lower percentage, ideally
around 20%. This adjustment aims to strike a balance between compensating the developer and
ensuring a more reasonable fee structure for users employing a developer's strategy.

Resolution
Commit: 3b57909527a72b9cedb66bfea7f7975230b949e35

Team Response: Fee factor reduced to 10%.

14 | Use OZ's forceApprove instead of custom _tokenApprove

Severity Category Status

INFO Improvement Fixed

Description of the issue

Use the cleaner and more efficient forceApprove function fromm Open Zeppelin's SafeERC20 lib
instead of using the custom _tokenApprove and _tokenApproveZero functions.



https://docs.lido.fi/guides/lido-tokens-integration-guide#withdrawals-unsteth
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/6bc1173c8e37ca7de2201a0230bb08e395074da1/contracts/token/ERC20/utils/SafeERC20.sol#L76

Recommendation

Change _tokenApprove and _tokenApproveZero occurrences through the codebase to forceApprove.
Resolution

Commit: 4b8d54a23c3d879b11332e0042416cb213589dal

Team Response: Resolved by replacing instances of " _tokenApprove™ and "~ _tokenApproveZero®
with the more efficient forceApprove function from OpenZeppelin's SafeERC20 library.

15 | Consider implementing an AAVE-V3 handler

Severity Category Status

INFO Improvement Acknowledged

Description of the issue

Given that AAVE-V3 represents the latest version of the protocol, boasting increased liquidity, a larger
user base, and a broader range of features, it is advisable to consider implementing an AAVE-v3
handler.

This implementation can attract more users to the wallet and aligns with the ongoing protocol
migrations towards the v3 version. Supporting AAVE-v3 ensures compatibility with the latest features
and contributes to the long-term viability of the wallet within the evolving AAVE ecosystem.

Resolution

Team Response: Acknowledged

16 | Handler naming conventions do not match

Severity Category Status

INFO Typo Fixed

Description of the issue

All handlers’ getContractName functions implementations return the name of the protocol that they
integrate preceded by the letter “H", except UNISWAPV3_HANDLER which returns “UniswapV3H".

Recommendation

Consider fixing the typo, in order to maintain consistency on the naming of all handlers.
Resolution

Commit: 84d873ff1534aa6b104271da8d5be99d65d4683

Team Response: Resolved by renaming and matching all handlers with their respective contract
names to ensure consistency.



17 | Use custom errors on _requireMsg

Severity Category Status

GAS Optimization Fixed

Description of the issue

The BASE_HANDLER utilizes _requireMsg for error handling, which involves passing strings as
parameters. This approach is considered inefficient, and there is also an absence of custom errors,
potentially impacting gas efficiency.

Recommehndation

To enhance gas efficiency, it is recommended to eliminate a level of abstraction by performing
checks directly inside the functions instead of passing strings as parameters to _requireMsg.
Consider refactoring the errors to custom errors too. This will save a significant amount of gas.

Resolution
Commit: 3a0f73e70e4e92a595f5a5e544bea010ac2f67c5

Team Response: Resolved by incorporating custom error handling and removing the use of the
" _requireMsg" function.

18 | Optimize for loops across the codebase

Severity Category Status

GAS Optimization Fixed

Description of the issue

Inside for loops across the codebase do not initialize i variables to 0, and consider performing
increments inside an unchecked block as well. This reduces gas costs.

for (uint256 i; i< length;) {

/] ...
unchecked{
++1;
}
}
Resolution

Commit: f95d54f8a3c4e204005d6feeade2e40266b1fbf2

Team Response: Resolved by enhancing loop gas efficiency.



DISCLAIMER

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Victor Martinez to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intended to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology. Note that blockchain technology and
cryptographic assets present a high level of ongoing risk.

My position is that each company and individual are responsible for their own due diligence and
continuous security. My goal is to help reduce the attack vectors and the high level of variance
associated with utilizing new and consistently changing technologies, and in no way claims any
guarantee of security or functionality of the technology we agree to analyze. Therefore, | do not
guarantee the explicit security of the audited smart contract, regardless of the verdict.



